skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Yang, Yue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Greenberg, Noam; Jain, Sanjay; Ng, Keng Meng; Schewe, Sven; Stephan, Frank; Wu, Guohua; Yang, Yue (Ed.)
    We give a systematic account of the current state of knowledge of an e↵ective analogue of the ultraproduct construction. We start with a product of a uniformly computable sequence of computable structures indexed by the set of natural numbers. The equality of elements and sat- isfaction of formulas are defined modulo a subset of the index set, which is cohesive, i.e., indecomposable with respect to computably enumerable sets. We present an analogue of Lo ́s’s theorem for e↵ective ultraprod- ucts and a number of results on definability and isomorphism types of the e↵ective ultrapowers of the field of rational numbers, when the com- plements of cohesive sets are computably enumerable. These e↵ective ultraproducts arose naturally in the study of the automorphisms of the lattice of computably enumerable vector spaces. Previously, a number of authors considered related constructions in the context of nonstandard models of fragments of arithmetic. 
    more » « less